Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Brief Bioinform ; 25(3)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38609331

RESUMO

Natural language processing (NLP) has become an essential technique in various fields, offering a wide range of possibilities for analyzing data and developing diverse NLP tasks. In the biomedical domain, understanding the complex relationships between compounds and proteins is critical, especially in the context of signal transduction and biochemical pathways. Among these relationships, protein-protein interactions (PPIs) are of particular interest, given their potential to trigger a variety of biological reactions. To improve the ability to predict PPI events, we propose the protein event detection dataset (PEDD), which comprises 6823 abstracts, 39 488 sentences and 182 937 gene pairs. Our PEDD dataset has been utilized in the AI CUP Biomedical Paper Analysis competition, where systems are challenged to predict 12 different relation types. In this paper, we review the state-of-the-art relation extraction research and provide an overview of the PEDD's compilation process. Furthermore, we present the results of the PPI extraction competition and evaluate several language models' performances on the PEDD. This paper's outcomes will provide a valuable roadmap for future studies on protein event detection in NLP. By addressing this critical challenge, we hope to enable breakthroughs in drug discovery and enhance our understanding of the molecular mechanisms underlying various diseases.


Assuntos
Descoberta de Drogas , Processamento de Linguagem Natural , Transdução de Sinais
2.
Database (Oxford) ; 20222022 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-35998105

RESUMO

Automatically extracting medication names from tweets is challenging in the real world. There are many tweets; however, only a small proportion mentions medications. Thus, datasets are usually highly imbalanced. Moreover, the length of tweets is very short, which makes it hard to recognize medication names from the limited context. This paper proposes a data-centric approach for extracting medications in the BioCreative VII Track 3 (Automatic Extraction of Medication Names in Tweets). Our approach formulates the sequence labeling problem as text entailment and question-answer tasks. As a result, without using the dictionary and ensemble method, our single model achieved a Strict F1 of 0.77 (the official baseline system is 0.758, and the average performance of participants is 0.696). Moreover, combining the dictionary filtering and ensemble method achieved a Strict F1 of 0.804 and had the highest performance for all participants. Furthermore, domain-specific and task-specific pretrained language models, as well as data-centric approaches, are proposed for further improvements. Database URL https://competitions.codalab.org/competitions/23925 and https://biocreative.bioinformatics.udel.edu/tasks/biocreative-vii/track-3/.


Assuntos
Mídias Sociais , Bases de Dados Factuais , Humanos
3.
JMIR Med Inform ; 7(4): e14502, 2019 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-31769759

RESUMO

BACKGROUND: Research on disease-disease association (DDA), like comorbidity and complication, provides important insights into disease treatment and drug discovery, and a large body of the literature has been published in the field. However, using current search tools, it is not easy for researchers to retrieve information on the latest DDA findings. First, comorbidity and complication keywords pull up large numbers of PubMed studies. Second, disease is not highlighted in search results. Finally, DDA is not identified, as currently no disease-disease association extraction (DDAE) dataset or tools are available. OBJECTIVE: As there are no available DDAE datasets or tools, this study aimed to develop (1) a DDAE dataset and (2) a neural network model for extracting DDA from the literature. METHODS: In this study, we formulated DDAE as a supervised machine learning classification problem. To develop the system, we first built a DDAE dataset. We then employed two machine learning models, support vector machine and convolutional neural network, to extract DDA. Furthermore, we evaluated the effect of using the output layer as features of the support vector machine-based model. Finally, we implemented large margin context-aware convolutional neural network architecture to integrate context features and convolutional neural networks through the large margin function. RESULTS: Our DDAE dataset consisted of 521 PubMed abstracts. Experiment results showed that the support vector machine-based approach achieved an F1 measure of 80.32%, which is higher than the convolutional neural network-based approach (73.32%). Using the output layer of convolutional neural network as a feature for the support vector machine does not further improve the performance of support vector machine. However, our large margin context-aware-convolutional neural network achieved the highest F1 measure of 84.18% and demonstrated that combining the hinge loss function of support vector machine with a convolutional neural network into a single neural network architecture outperforms other approaches. CONCLUSIONS: To facilitate the development of text-mining research for DDAE, we developed the first publicly available DDAE dataset consisting of disease mentions, Medical Subject Heading IDs, and relation annotations. We developed different conventional machine learning models and neural network architectures and evaluated their effects on our DDAE dataset. To further improve DDAE performance, we propose an large margin context-aware-convolutional neural network model for DDAE that outperforms other approaches.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...